Linux repositories inspector


Openwall Project
October 11, 2017
Aliases: crypt(3), crypt(3), crypt_r(3), crypt_r(3), crypt_ra(3)


Extended crypt library for descrypt, md5crypt, bcrypt, and others


libcrypt development files


Development files for libxcrypt


crypt, crypt_r, crypt_rn, crypt_ra - passphrase hashing


#include <crypt.h>
char *crypt(const char *phrase, const char *setting); char *crypt_r(const char *phrase, const char *setting, struct crypt_data *data); char *crypt_rn(const char *phrase, const char *setting, void *data, int size); char *crypt_ra(const char *phrase, const char *setting, void **data, int *size);
Link with -lcrypt.


The crypt, crypt_r, crypt_rn, and crypt_ra functions irreversibly \(lqhash\(rq phrase for storage in the system password database (shadow(5)) using a cryptographic \(lqhashing method.\(rq The result of this operation is called a \(lqhashed passphrase\(rq or just a \(lqhash.\(rq Hashing methods are described in crypt(5).
setting controls which hashing method to use, and also supplies various parameters to the chosen method, most importantly a random \(lqsalt\(rq which ensures that no two stored hashes are the same, even if the phrase strings are the same. The hashing methods are explained below.
The crypt_data structure passed to crypt_r has at least these fields:
struct crypt_data {
    char output[CRYPT_OUTPUT_SIZE];
    char setting[CRYPT_OUTPUT_SIZE];
    char initialized;
Upon a successful return from crypt_r, the hashed passphrase will be stored in output. Applications are encouraged, but not required, to use the setting and phrase fields to store the strings that they will pass as phrase and setting to crypt_r. This will make it easier to erase all sensitive data after it is no longer needed.
The initialized field must be set to zero before the first time a crypt_data object is first used in a call to crypt_r. We recommend zeroing the entire crypt_data object, not just initialized and not just the documented fields, before the first use. (Of course, do this before storing anything in setting and phrase.)
The data argument to crypt_rn should also point to a crypt_data object, and size should be the size of that object, cast to int. When used with crypt_rn, the entire crypt_data object must be zeroed before its first use; this is not just a recommendation, as it is for crypt_r. (setting and phrase are still allowed to be used.) Otherwise, the fields of the object have the same uses that they do for crypt_r.
On the first call to crypt_ra, data should be the address of a void * variable set to NULL, and size should be the address of an int variable set to zero. crypt_ra will allocate and initialize a crypt_data object, using malloc(3), and write its address and size into *data and *size. These can be reused in subsequent calls. After the application is done hashing passphrases, it should deallocate *data using free(3).


Upon successful completion, crypt, crypt_r, crypt_rn, and crypt_ra return a pointer to a string which encodes both the hashed passphrase, and the settings that were used to encode it. This string is directly usable as setting with other calls to crypt, crypt_r, crypt_rn, and crypt_ra, and as prefix with calls to crypt_gensalt, crypt_gensalt_rn, and crypt_gensalt_ra. It will be entirely printable ASCII, and will not contain whitespace or the characters \(oq:\(cq, \(oq;\(cq, \(oq*\(cq, \(oq!\(cq, or \(oq\\(cq. See crypt(5) for more detail on the format of hashed passphrases.
crypt places its result in a static storage area, which will be overwritten by subsequent calls to crypt. It is not safe to call crypt from multiple threads simultaneously.
crypt_r, crypt_rn, and crypt_ra place their result in the output field of the crypt_data object that they are supplied with; it is safe to call them from multiple threads simultaneously, as long as a separate crypt_data object is used for each thread.
Upon error, crypt and crypt_r return a pointer to an invalid hashed passphrase. This string will be shorter than 13 characters, will begin with a \(oq*\(cq, and will not compare equal to setting. (This peculiar behavior is for compatibility with old applications that assume that crypt cannot return a null pointer. See PORTABILITY NOTES below.)
crypt_rn and crypt_ra also write an invalid hashed passphrase to the output field of their crypt_data object when they fail, but they return a null pointer.
All four functions set errno when they fail.


EINVAL setting is invalid, or requests a hashing method that is not supported.
ERANGE crypt_rn only: size is too small for the hashing method requested by setting.
ENOMEM Failed to allocate internal scratch memory.
crypt_ra only: failed to allocate memory for *data.
Hashing passphrases is not supported at all on this installation, or the hashing method requested by setting is not supported. These error codes are not used by this version of libcrypt, but may be encountered on other systems.


crypt is included in POSIX, but crypt_r, crypt_rn, and crypt_ra are not part of any standard.
POSIX does not specify any hashing methods, and does not require hashed passphrases to be portable between systems. In practice, hashed passphrases are portable as long as both systems support the hashing method that was used. However, the set of supported hashing methods varies considerably from system to system.
The behavior of crypt on errors isn’t well standardized. Some implementations simply can’t fail (except by crashing the program), others return a null pointer or a fixed string. Most implementations don’t set errno, but some do. POSIX specifies returning a null pointer and setting errno, but it defines only one possible error, ENOSYS, in the case where crypt is not supported at all. Many existing applications are not prepared to handle null pointers returned by crypt. The behavior described above for this implementation, setting errno and returning an invalid hashed passphrase different from setting, is chosen to make these applications fail closed when an error occurs.
Due to historical restrictions on the export of cryptographic software from the USA, crypt is an optional POSIX component. Applications should therefore be prepared for crypt not to be available, or to always fail (setting errno to ENOSYS) at runtime.
POSIX specifies that crypt is declared in unistd.h, but only if the macro _XOPEN_CRYPT is defined and has a value greater than or equal to zero. Since libcrypt does not provide unistd.h, it declares crypt, crypt_r, crypt_rn, and crypt_ra in crypt.h instead.
On a minority of systems (notably recent versions of Solaris), crypt uses a thread-specific static storage buffer, which makes it safe to call from multiple threads simultaneously, but does not prevent each call within a thread from overwriting the results of the previous one.


Some implementations of crypt, upon error, return an invalid hash that is stored in a read-only location or only initialized once, which means that it is only safe to erase the buffer pointed to by the crypt return value if an error did not occur.
struct crypt_data may be quite large (32kB in this implementation of libcrypt; over 128kB in some other implementations). This is large enough that it may be unwise to allocate it on the stack.
Some recently designed hashing methods need even more scratch memory, but the crypt_r interface makes it impossible to change the size of crypt_data without breaking binary compatibility. The crypt_rn interface could accommodate larger allocations for specific hashing methods, but the caller of crypt_rn has no way of knowing how much memory to allocate. crypt_ra does the allocation itself, but can only make a single call to malloc(3).


For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
Thread safety MT-Unsafe race:crypt
Thread safety MT-Safe


A rotor-based crypt function appeared in Version 6 AT&T UNIX. The "traditional" DES-based crypt first appeared in Version 7 AT&T UNIX.
crypt_r originates with the GNU C Library. There’s also a crypt_r function on HP-UX and MKS Toolkit, but the prototypes and semantics differ.
crypt_rn and crypt_ra originate with the Openwall project.
⇧ Top