30 June 1997
manpages-zh
Chinese manual pages
man-pages-zh-CN
Chinese Man Pages from Chinese Man Pages Project
man-pages-zh_cn
Simplified Chinese Linux man pages
tcpdump
command-line network traffic analyzer
NAME
tcpdump - 转储网络上的数据流
总览 (SYNOPSIS)
tcpdump [ -adeflnNOpqStvx ] [ -c count ] [ -F file ]
[ -i interface ] [ -r file ] [ -s snaplen ]
[ -T type ] [ -w file ] [ expression ]
[ -i interface ] [ -r file ] [ -s snaplen ]
[ -T type ] [ -w file ] [ expression ]
描述 (DESCRIPTION)
Tcpdump 打印出 在某个 网络界面 上, 匹配 布尔表达式 expression 的报文 的 报头.
对于 SunOS 的 nit 或 bpf 界面: 要 运行 tcpdump , 你 必须 有 /dev/nit 或 /dev/bpf* 的 读访问 权限.
对于 Solaris 的 dlpi: 你 必须 有 网络仿真设备 (network pseudo device), 如 /dev/le 的 读访问 权限.
对于 HP-UX 的 dlpi: 你 必须 是 root, 或者 把它 安装成 root 的 设置uid 程序.
对于 IRIX 的 snoop: 你 必须 是 root, 或者 把它 安装成 root 的 设置uid 程序.
对于 Linux: 你 必须 是 root, 或者 把它 安装成 root 的 设置uid 程序.
对于 Ultrix 和 Digital UNIX: 一旦 超级用户 使用 pfconfig(8) 开放了 promiscuous 操作模式 (promiscuous-mode), 任何用户 都可以 运行 tcpdump.
对于 BSD: 你 必须 有 /dev/bpf* 的 读访问 权限.
选项 (OPTIONS)
-a | 试着 把 网络和广播地址 转换成 名称. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-c | 当 收到 count 报文 后 退出. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-d | 把 编译好的 报文匹配代码 (packet-matching code) 翻译成 可读形式, 传往 标准输出, 然后退出. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-dd | 把 报文匹配代码 (packet-matching code) 以 C 程序片断 的 形式 输出. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-ddd | 把 报文匹配代码 (packet-matching code) 以 十进制数 形式 输出 (前面 加上 总数). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-e | 显示 链路层报头. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-f | 以 数字形式 显示 ’外部的’ 互联网地址, 而不是 字符形式 (这个 选项 用来 绕开 脑壳坏光的 SUN 黄页服务器 的 问题 — 一般说来 当它 翻译 外部网络 的 数字地址 时 会长期挂起). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-F | 把 file 的内容 用作 过滤表达式. 忽略 命令行 上 的 表达式. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-i | 监听 interface. 如果 不指定 接口, tcpdump 在 系统 的 接口 清单 中, 寻找 号码最小, 已经 配置好的 接口 (loopback 除外). 选中的时候 会 中断 连接. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-l | 行缓冲 标准输出. 可用于 捕捉 数据 的 同时 查看 数据. 例如, ‘‘tcpdump -l | tee dat’’ or ‘‘tcpdump -l > dat & tail -f dat’’. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-n | 不要把 地址 转换成 名字 (指的是 主机地址, 端口号等) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-N | 不显示 主机名字 中的 域名 部分. 例如, 如果 使用 这个 选项, tcpdump 只显示 ‘‘nic’’, 而不是 ‘‘nic.ddn.mil’’. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-O | 禁止运行 报文匹配代码 的 优化器. 这个选项 只有 当你 怀疑 优化器 有 bug 时 才有用. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-p | 禁止 把 接口 置成 promiscuous(杂凑) 模式. 注意, 接口 有可能 因 其他原因 而 处于 promiscuous 模式; 因此, ’-p’ 不能 作为 ‘ether host {local-hw-addr} 或 ether broadcast’ 的 简写. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-q | 快速输出. 显示 较少的 协议信息, 输出行 会 短一点点. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-r | 从 file 中 读入 数据报 (文件 是用 -w 选项 创建的). 如果 file 是 ‘‘-’’, 就从 标准输入 读入. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-s | 从每个 报文 中 截取 snaplen 字节的数据, 而不是 缺省的 68 (如果是 SunOS 的 NIT, 最小值是 96). 68 个字节 适用于 IP, ICMP, TCP 和 UDP, 但是 有可能 截掉 名字服务器 和 NFS 报文 的 协议 信息 (见下文). 输出时 如果指定 ‘‘[|proto]’’, tcpdump 可以 指出 那些 捕捉量过小 的 数据报, 这里的 proto 是 截断发生处 的 协议层 名称. 注意, 采用 更大的 捕捉范围 不但 增加了 处理 报文 的 时间, 而且 减少了 报文的 缓冲 数量, 可能 导致 报文的丢失. 你 应该 把 snaplen 设的 尽量小, 只要 能够 容纳 你 需要 的 协议信息 就可以了. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-T | 把 通过 "expression" 挑选出来的 报文 解释成 指定的 type. 目前 已知 的 类型 有: rpc (远程过程调用 Remote Procedure Call), rtp (实时应用协议 Real-Time Applications protocol), rtcp (实时应用控制协议 Real-Time Applications control protocol), vat (可视音频工具 Visual Audio Tool), 和 wb (分布式白板 distributed White Board). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-S | 显示 绝对的, 而不是 相对的 TCP 流序号. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-t | 禁止 显示 时戳标志. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-tt | 显示 未格式化的 时戳标志. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-v | (稍微多一点) 繁琐的输出. 例如, 显示 IP 数据报 中的 生存周期 和 服务类型. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-vv | 更繁琐的输出. 例如, 显示 NFS 应答报文 的 附加域. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-w | 把 原始报文 存进 file, 不做 分析 和 显示. 它们 可以 以后 用 -r 选项 显示. 如果 file 是 ‘‘-’’, 就 写往 标准输出. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-x | 以 16 进制数 形式 显示 每一个 报文 (去掉链路层报头后) . 可以 显示 较小的 完整 报文, 否则 只 显示 snaplen 个 字节 . | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
expression | 用来 选择 要 转储 的 数据报. 如果 没有 指定 expression , 就 转储 网络的 全部 报文. 否则, 只转储 相对 expression 为 ‘true’ 的 数据报.
expression 由 一个或多个 原语 (primitive) 组成. 原语 通常 由 一个 标识 (id, 名称或数字), 和 标识 前面的 一个或多个 修饰子(qualifier) 组成. 修饰子 有 三种 不同的类型:
如果 给出 标识符, 但没给 关键字, 那么 暗指 最近使用 的 关键字. 例如,
not host vs and ace作为 not host vs and host ace的 简写形式, 不应该 和 not ( host vs or ace )混淆. 表达式参数 可以 作为 单个 参数, 也可以 作为 复合参数 传给 tcpdump, 后者 更方便 一些. 一般说来, 如果 表达式 包含 Shell 元字符(metacharacter), 传递 单个 括起来 的 参数 要 容易 一些. 复合参数 在 被解析前 用 空格 联接 一起.
|
示例 (EXAMPLES)
显示 所有 进出 sundown 的 报文:
tcpdump host sundown
显示 helios 和 主机 hot, ace 之间 的 报文 传送:
tcpdump host helios and \( hot or ace \)
显示 ace 和 除了 helios 以外的 所有 主机 的 IP报文:
tcpdump ip host ace and not helios
显示 本地的主机 和 Berkeley的主机 之间 的 网络数据:
tcpdump net ucb-ether
显示 所有 通过 网关 snup 的 ftp 报文 (注意 这个 表达式 被 单引号 括起, 防止 shell 解释 园括弧):
tcpdump ’gateway snup and (port ftp or ftp-data)’
显示 既不是 来自 本地主机, 也不是 传往 本地主机 的 网络数据 (如果 报文 通过 网关 进入 其他网络, 那么 它 绝不可能 到达 你的 本地网络).
tcpdump ip and not net localnet
显示 每个 TCP会话 的 起始 和 结束 报文 (SYN 和 FIN 报文), 而且 会话方 中 有一个 远程主机.
tcpdump ’tcp[13] & 3 != 0 and not src and dst net localnet’
显示 经过 网关 snup 中 大于 576 字节的 IP 数据报:
tcpdump ’gateway snup and ip[2:2] > 576’
显示 IP 广播 或 多目传送 的 数据报, 但这些 报文 不是 通过 以太广播 或 以太多目传送 形式 传送的:
tcpdump ’ether[0] & 1 = 0 and ip[16] >= 224’
显示 所有 不是 回响请求/应答 的 ICMP 报文 (也就是说, 不是 ping 报文):
tcpdump ’icmp[0] != 8 and icmp[0] != 0"
输出格式 (OUTPUT FORMAT)
tcpdump 的 输出格式 取决于 协议. 下面的 描述 给出 大多数 格式 的 简要说明 和 范例.
链路层报头 (Link Level Headers)
如果 给出 ’-e’ 选项 就 显示 链路层报头.
在 以太网上, 显示 报文的 源目地址, 协议 和 报文长度.
在 FDDI 网络上, ’-e’ 选项 导致 tcpdump 显示出 ‘帧控制(frame control)’ 域, 源目地址 和 报文长度. (‘帧控制’ 域 负责 解释 其余的 报文. 普通报文 (例如 装载 IP数据报 的 报文) 是 ‘异步’ 报文, 优先级 介于 0 到 7 (例如, ‘async4’). 那些 被认为 携带了 802.2 逻辑链路控制(LLC) 报文; 如果 它们 不是 ISO 数据报 或者 所谓的 SNAP 报文, 就显示 LLC 报头.
(注意: 以下 描述中 假设 你 熟悉 RFC-1144 中说明的 SLIP 压缩算法.)
在 SLIP 链路上, tcpdump 显示出 方向指示 (‘‘I’’ 指 inbound(进入), ‘‘O’’ 指 outbound(离开)), 报文类型 和 压缩信息. 首先显示的 是 报文类型. 有三种 类型 ip, utcp 和 ctcp. 对于 ip 报文 不再 显示 更多的 链路信息. 对于 TCP 报文, 在 类型 后面 显示 连接标识. 如果 报文 是 压缩过的, 就显示出 它的 编码报头. 这种 特殊情况 以 *S+n 和 *SA+n 的 形式 显示, 这里的 n 是 流序号 (或者 流序号 和 ack) 的 变化总量. 如果 不是 特殊情况, 就显示出 0 或 多个 变化. 变化 由 U (urgent pointer), W (window), A (ack), S (sequence number) 和 I (packet ID) 指明, 后跟 一个 变化量(+n or -n), 或者 是一个 新值(=n). 最后显示 报文中 的 数据总量, 以及 压缩报头 的 长度.
例如, 下面一行 显示了 一个 传出的 压缩的 TCP 报文, 有一个 隐含的 连接标识; 确认(ack)的 变化量是 6, 流序号 增加 49, 报文ID 增加 6; 有三个字节的数据 和 六个字节 的 压缩报头:
O ctcp * A+6 S+49 I+6 3 (6)
ARP/RARP 报文
Arp/rarp 报文 的 输出 是 请求类型 及其 参数. 输出格式 大体上 能够 自我解释. 这里 是一个 简单的例子, 来自 主机 rtsg 到 主机 csam 的 ’rlogin’ 开始 部分:
arp who-has csam tell rtsg arp reply csam is-at CSAM
如果 用 tcpdump -n 看 就 清楚一些:
arp who-has 128.3.254.6 tell 128.3.254.68 arp reply 128.3.254.6 is-at 02:07:01:00:01:c4
如果 用 tcpdump -e, 可以 看到 实际上 第一个 报文 是 广播, 第二个 报文 是 点到点 的:
RTSG Broadcast 0806 64: arp who-has csam tell rtsg CSAM RTSG 0806 64: arp reply csam is-at CSAM
TCP 报文
(注意: 以下的描述中 假设 你 熟悉 RFC-793 中 说明的 TCP 协议, 如果 你 不了解 这个 协议, 无论是 本文 还是 tcpdump 都对你 用处 不大)
一般说来 tcp 协议的 输出格式是:
src > dst: flags data-seqno ack window urgent options
Src, dst 和 flags 肯定 存在. 其他域 依据 报文的 tcp 报头 内容, 只输出 有必要 的 部分.
下面 是 从 主机 rtsg rlogin 到 主机 csam 的 开始部分.
rtsg.1023 > csam.login: S 768512:768512(0) win 4096 <mss 1024> csam.login > rtsg.1023: S 947648:947648(0) ack 768513 win 4096 <mss 1024> rtsg.1023 > csam.login: . ack 1 win 4096 rtsg.1023 > csam.login: P 1:2(1) ack 1 win 4096 csam.login > rtsg.1023: . ack 2 win 4096 rtsg.1023 > csam.login: P 2:21(19) ack 1 win 4096 csam.login > rtsg.1023: P 1:2(1) ack 21 win 4077 csam.login > rtsg.1023: P 2:3(1) ack 21 win 4077 urg 1 csam.login > rtsg.1023: P 3:4(1) ack 21 win 4077 urg 1
Csam 用类似的 形式 应答, 只是 增加了 一个 对 rtsg SYN 的 捎带确认. 然后 Rtsg 确认 csam 的 SYN. ‘.’ 意味着 没有 设置 标志. 这个 报文 不包含 数据, 因此 也就 没有 数据的流序号. 注意这个 确认流序号 是一个 小整数(1). 当 tcpdump 第一次 发现 一个 tcp 会话时, 它 显示 报文 携带的 流序号. 在 随后收到的 报文里, 它 显示 当前 报文 和 最初那个 报文 的 流序号 之 差. 这 意味着 从第一个报文 开始, 以后的 流序号 可以 理解成 数据流 中的 相对位移 (每个报文 的 第一个 数据字节 从 ’1’ 计数). ‘-S’ 选项 能够 改变 这个 特性, 直接 显示 原始的 流序号.
在 第六行, rtsg 传给 csam 19 个字节 的 数据 (字节 2 到 20). 报文中 设置了 PUSH 标志. 第七行 csam 表明 它 收到了 rtsg 的 数据, 字节序号 是 21, 但不包括 第21个 字节. 显然 大多数 数据 在 socket 的 缓冲区内, 因为 csam 的 接收窗口 收到的 数据 小于 19 个 字节. 同时 csam 向 rtsg 发送了 一个字节 的 数据. 第八和第九行 显示 csam 发送了 两个字节 的 紧急数据 到 rtsg.
如果 捕捉区 设置的 过小, 以至于 tcpdump 不能 捕捉到 完整的 TCP 报头, tcpdump 会 尽可能的 翻译 已捕获的 部分, 然后 显示 ‘‘[|tcp]’’, 表明 无法 翻译 其余 部分. 如果 报头 包含 有问题的 选项 (选项表 长度 太小 或者 超出 报头范围), tcpdump 显示 ‘‘[bad opt]’’ 并且 不再 翻译 其他 选项部分 (因为 它 不可能 判断出 从哪儿 开始). 如果 报头长度 表明 存在 选项, 但是 IP 数据报 长度 不够, 不可能 真的 保存 选项, tcpdump 就显示 ‘‘[bad hdr length]’’.
UDP 报文
UDP 格式 就象 这个 rwho 报文 显示的:
actinide.who > broadcast.who: udp 84
某些 UDP 服务 能够 识别出来(从 源目端口号 上), 因而 显示出 更高层的 协议信息. 特别是 域名服务请求(RFC-1034/1035) 和 NFS 的 RPC 调用(RFC-1050).
UDP 名字服务请求 (Name Server Requests)
(注意: 以下的描述中 假设 你 熟悉 RFC-1035 说明的 域名服务协议. 如果你 不熟悉 这个协议, 下面的内容 可能 看起来是 天书.)
名字服务请求 的 格式 是
src > dst: id op? flags qtype qclass name (len)
h2opolo.1538 > helios.domain: 3+ A? ucbvax.berkeley.edu. (37)
Tcpdump 会检查 一些 不规则 情况, 相应的 结果 作为 补充域 放在 方括号内: 如果 某个 查询 包含 回答, 名字服务 或 管理机构部分, 就把 ancount, nscount, 或 arcount 显示成 ‘[na]’, ‘[nn]’ 或 ‘[nau]’, 这里的 n 代表 相应的 数量. 如果 在 第二和第三字节 中, 任何一个 回答位(AA, RA 或 rcode) 或 任何一个 ‘必须为零’ 的位 被 置位, 就显示 ‘[b2&3=x]’, 这里的 x 是 报头 第二和第三字节 的 16进制数.
UDP 名字服务回答
名字服务回答的 格式 是
src > dst: id op rcode flags a/n/au type class data (len)
helios.domain > h2opolo.1538: 3 3/3/7 A 128.32.137.3 (273) helios.domain > h2opolo.1537: 2 NXDomain* 0/1/0 (97)
在第二个例子里, helios 对 标识为2 的 询问 作出 域名不存在 (NXDomain) 的 回答, 没有 回答记录, 一个 名字服务记录, 没有 管理结构部分.
‘*’ 表明 设置了 权威回答(authoritative answer). 由于 没有 回答记录, 这里就 不显示 type, class 和 data.
‘*’ 表明 设置了 权威回答(authoritative answer). 由于 没有 回答记录, 这里就 不显示 type, class 和 data.
其他 标志 字符 可以 显示为 ‘-’ (没有设置递归有效(RA)) 和 ‘|’ (设置 消息截短(TC)). 如果 ‘问题’ 部分 没有 有效的 内容, 就 显示 ‘[nq]’.
注意 名字服务的 询问和回答 一般说来 比较大, 68 字节的 snaplen 可能 无法 捕捉到 足够的 报文内容. 如果 你 的确 在 研究 名字服务 的 情况, 可以 使用 -s 选项 增大 捕捉缓冲区. ‘-s 128’ 应该 效果 不错了.
NFS 请求和响应
Sun NFS (网络文件系统) 的 请求和响应 显示格式 是:
src.xid > dst.nfs: len op args src.nfs > dst.xid: reply stat len op results
sushi.6709 > wrl.nfs: 112 readlink fh 21,24/10.73165 wrl.nfs > sushi.6709: reply ok 40 readlink "../var" sushi.201b > wrl.nfs: 144 lookup fh 9,74/4096.6878 "xcolors" wrl.nfs > sushi.201b: reply ok 128 lookup fh 9,74/4134.3150
fh
) 21,24/10.731657119 上执行 readlink (读取 符号连接) 操作. (如果 运气 不错, 就象 这种情况, 文件句柄 可以 依次翻译成 主次设备号, i 节点号, 和 事件号(generation number). ) Wrl 回答 ‘ok’ 和 连接的 内容.
在第三行, sushi 请求 wrl 在 目录文件 9,74/4096.6878 中 查找 ‘xcolors’. 注意 数据的 打印格式 取决于 操作类型. 格式 应该 可以 自我说明.
给出 -v (verbose) 选项 可以 显示 附加信息. 例如:
sushi.1372a > wrl.nfs: 148 read fh 21,11/12.195 8192 bytes @ 24576 wrl.nfs > sushi.1372a: reply ok 1472 read REG 100664 ids 417/0 sz 29388
如果再给一个 -v 选项 (-vv), 还能 显示 更多的细节.
注意 NFS 请求 的 数据量 非常大, 除非 增加 snaplen, 否则 很多细节 无法显示. 试一试 ‘-s 192’ 选项.
NFS 应答报文 没有明确 标明 RPC 操作. 因此 tcpdump 保留有 ‘‘近来的’’ 请求 记录, 根据 交互号 匹配 应答报文. 如果 应答报文 没有 相应的 请求报文, 它 就 无法分析.
KIP Appletalk (UDP 上的 DDP)
Appletalk DDP 报文 封装在 UDP 数据报 中, 解包后 按 DDP 报文 转储 (也就是说, 忽略 所有的 UDP 报头 信息). 文件 /etc/atalk.names 用来 把 appletalk 网络和节点号 翻译成 名字. 这个文件 的 行格式 是
number name
1.254 ether 16.1 icsd-net 1.254.110 ace
Appletalk 地址 按 这个格式 显示
net.host.port
144.1.209.2 > icsd-net.112.220 office.2 > icsd-net.112.220 jssmag.149.235 > icsd-net.2
Tcpdump 可以 翻译 NBP (名字联结协议) 和 ATP (Appletalk 交互协议) 的 报文 内容. 其他协议 只转储 协议名称 (或号码, 如果 还 没给 这个协议 注册 名称) 和 报文大小.
NBP 报文 的 输出格式 就象 下面的 例子:
icsd-net.112.220 > jssmag.2: nbp-lkup 190: "=:LaserWriter@*" jssmag.209.2 > icsd-net.112.220: nbp-reply 190: "RM1140:LaserWriter@*" 250 techpit.2 > icsd-net.112.220: nbp-reply 190: "techpit:LaserWriter@*" 186
ATP 报文 格式 如 下例 所示:
jssmag.209.165 > helios.132: atp-req 12266<0-7> 0xae030001 helios.132 > jssmag.209.165: atp-resp 12266:0 (512) 0xae040000 helios.132 > jssmag.209.165: atp-resp 12266:1 (512) 0xae040000 helios.132 > jssmag.209.165: atp-resp 12266:2 (512) 0xae040000 helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000 helios.132 > jssmag.209.165: atp-resp 12266:4 (512) 0xae040000 helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000 helios.132 > jssmag.209.165: atp-resp 12266:6 (512) 0xae040000 helios.132 > jssmag.209.165: atp-resp*12266:7 (512) 0xae040000 jssmag.209.165 > helios.132: atp-req 12266<3,5> 0xae030001 helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000 helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000 jssmag.209.165 > helios.132: atp-rel 12266<0-7> 0xae030001 jssmag.209.133 > helios.132: atp-req* 12267<0-7> 0xae030002
Helios 用 8 个 512字节 的 报文 应答. 跟在 交互号 后面的 ‘:digit’ 给出了 交互过程中 报文的 序列号, 括弧内的 数字 是 报文的 数据量, 不包括 atp 报头. 报文 7 的 ‘*’ 表明 设置了 EOM 位.
然后 Jssmag.209 请求 重传 第 3 & 5 报文. Helios 做了 重传后 jssmag.209 结束 这次 交互操作. 最后, jssmag.209 发起 下一次 交互请求. 请求中的 ‘*’ 表明 没有 设置 XO (exactly once) 位.
IP 分片
分片的 Internet 数据报 显示为
(frag id:size@offset+) (frag id:size@offset)
Id 是 分片 标识号. Size 是 分片 大小 (字节), 不包括 IP 报头. Offset 是 该分片 在 原数据报 中 的 偏移 (单位是字节).
每一个 分片 的 信息 都可以 打印出来. 第一个 分片 包含了 高层 协议 报头, 显示 协议信息 后 显示 分片 的 信息. 第一个 分片 以后的 分片 不再 含有 高层协议 报头, 所以 在 源目地址 后面 只显示 分片 信息. 例如, 下面是 从 arizona.edu 到 lbl-rtsg.arpa 的 一部分 ftp 传输, 途经的 CSNET 看上去 处理不了 576 字节的 数据报:
arizona.ftp-data > rtsg.1170: . 1024:1332(308) ack 1 win 4096 (frag 595a:328@0+) arizona > rtsg: (frag 595a:204@328) rtsg.1170 > arizona.ftp-data: . ack 1536 win 2560
如果 报文的 IP 标有 不要分片 标志, 那么 在尾部 显示 (DF).
时戳
缺省情况下, 所有 输出行 的 前面 都有 时戳. 时戳 就是 当前时间, 显示格式为
hh:mm:ss.frac
作者 (AUTHORS)
Van Jacobson, Craig Leres and Steven McCanne, all of the Lawrence Berkeley National Laboratory, University of California, Berkeley, CA.
当前 版本 可以 从 匿名ftp 获得:
ftp://ftp.ee.lbl.gov/tcpdump.tar.Z
BUGS
请把 臭虫 报告 传往 tcpdump.
NIT 不允许 监视 你自己的 传出数据, BPF 可以. 我们 建议 你 使用 后者.
应该 试着 重组 IP 分片, 至少可以 为 更高层的 协议 计算出 正确的 长度.
名字服务逆向询问 转储的 不正确: 打印出 (空的)问题部分, 而实际上 询问 放在了 回答部分. 有人 认为 这种 逆向询问 本身就是 bug, 应该 修改 产生问题 的 程序, 而非 tcpdump.
苹果 Ethertalk DDP 的 报文 应该 象 KIP DDP 的 报文 一样 容易 转储, 事实 却 不是 这样. 即使 我们 有意 作点什么 来 促销 Ethertalk (我们没有), LBL 也不允许 Ethertalk 出现在 它的 任何网络上, 所以 我们 没办法 测试 这些代码.
如果 报文的 路径上 出现 夏时制时间 变化, 可能 导致 时戳 混乱. (这个时间变化将忽略)
操作 FDDI 报头的 过滤器表达式 假设 所有的 FDDI 报文 被封装在 以太报文 中. 这对 IP, ARP 和 DECNET Phase IV 无疑是 正确的, 但对 某些 协议 如 ISO CLNS 不正确. 因此, 过滤器 有可能会 糊里糊涂的 的 接收 一些 并不真正 匹配 过滤器表达式 的 报文.
[中文版维护人]
徐明 <xuming>
[中文版最新更新]
2003/05/13
《中国Linux论坛man手册页翻译计划》
http://cmpp.linuxforum.net
跋
本页面中文版由中文 man 手册页计划提供。
中文 man 手册页计划:https://github.com/man-pages-zh/manpages-zh
中文 man 手册页计划:https://github.com/man-pages-zh/manpages-zh